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Noneommutative Mean Ergodic Theorem 
for Partial W*-Dynamical Semigroups 

G. O. S. Ekhaguere 1' 2 

Received December 21, 1992 

A noncommutative mean ergodic theorem for dynamical semigroups of maps 
on partial W*-algebras of linear operators from a pre-Hilbert space into 
its completion is proved. This generalizes a similar result of Watanabe for 
dynamical semigroups of maps on W*-algebras of operators. 

1. INTRODUCTION 

Noncommutative extensions of yon Neumann's mean ergodic theorem 
for semigroups of linear contractions on Hilbert spaces have been estab- 
lished by a number of authors (Watanabe, 1979; Kovfics and Sztics, 1966; 
Lance, 1976: Sinai and Anshelvich, 1976). The extensions are in the context 
of W*-algebras and are useful in the study of the asymptotic averages of 
semigroups of bounded linear operators on Hilbert spaces. Studies of this 
type are encountered in the algebraic approach (Haag and Kastler, 1964; 
Bratelli and Robinson, 1979/1981) to quantum statistical mechanics or 
quantum field theory, where the fundamental object is a C*-algebra or a 
W*-algebra of observables. 

The C*-algebraic setting for quantum-theoretic studies is, however, 
restrictive, in view of the fact that observables are, in general, unbounded 
linear operators. Our main concern is with unbounded linear operators; to 
study collections of them algebraically, the C*-algebraic setting must be 
abandoned. Accordingly, in this paper, the central structure is a partial 
*-algebra (Antoine etal., 1990, 1991) of, in general, unbounded linear 
operators from a pre-Hilbert space to its completion. We cofisider semi- 
groups of maps on such *-algebras and prove a mean ergodic theorem for 
the semigroups. 
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The rest of the paper is organized as follows. In Section 2, we describe 
the algebraic setting in which we work. Partial W*-dynamical semigroups 
on partial W*-algebras are introduced in Section 3. The semigroups are 
generalizations of classical semigroups of maps on a W*-algebra of 
operators. The mean ergodic theorem for partial W*-dynamical semi- 
groups is proved in Section 4. The result is a generalization of Watanabe's 
(1979) mean ergodic theorem for semigroups on W*-algebras of operators. 

2. THE ALGEBRAIC SETTING 

A knowledge of partial *-algebras, as outlined in Antoine etal. 
(1990, 1991) is essential for what follows. Some other studies involving 
partial *-algebras and related to the present work have been described in 
Ekhaguere and Odiobala (1991 ) and Ekhaguere (199 la, b). 

Let d be a partial *-algebra with partial multiplication �9 and involu- 
tion �9 . For  x ~ d ,  L(x) [resp. R(x)]  denotes the set of all left (resp. right) 
multipliers of x. If c~ is an arbitrary subset of d ,  then 

L(cg) = ( ~ x ~  L(x), the set of universal left multipliers of Cg 

R(c~) = N x ~ ~ R(x), the set of universal right multipliers of cg 

M(Cg) = L(~)  n R(C6), the set of universal multipliers of Cg 

A member e of d is called a unit if e eM(Cg), e*=e., and 
e �9 x = x = x �9 e, for all x ~ d .  If d has a unit, then d is called unital. 

A state on d is a sesquilinear form ~o: d x d - ~  C, the complex 
numbers, such that co(e, e ) =  1. 

We denote the set of all states on d by S ( ~  x d ) .  
We shall employ certain concrete partial *-algebras called partial 

O*-algebras. To describe these, let D be a pre-Hilbert space and H its 
Hilbert space completion, with inner product ( . , . ) H  and norm ll I[a. 

To the pair (D, H), we associate the set L+(D,  H) of all linear 
operators a with domain D(a)= D, range of a contained in H, and 
D ( a * ) ~ D ,  where x* is the operator adjoint of x. Then, L + ( D , H )  is 
a linear space when supplied with the usual notions of addition and 
scalar multiplication. This linear space becomes a partial *-algebra with 
involution +~and partial multiplication [] defined as follows. 

For  a~L+(�9 H), 

a + =a*[O 

and for a, beL+(D,  H) such that a+O~D(b  *) and bOc_D(a+*), 

a ~ b=a+*b 
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We shall denote the partial *-algebra (L+(D,H),  +, D) simply by 
L+(~,  H). This partial *-algebra is unital; we denote its unit by e. 

Definition. A partial *-subalgebra of L~(13, H) is called a partial 
O*-algebra. 

Remark. 1. It follows that L,+(~, H) is the maximal partial 
O*-algebra corresponding to the pair (13, ~). 

2. Let J /~L+~(9 ,  H) be a partial O*-algebra. In addition to the 
weak topology tw, a-weak topology t~ ,  the strong topology t=, and 
a-strong* topology t,s. on J/explained in Antoine et al. (1990, 1991) and 
Ekhaguere (1991a), we shall also employ the t~.-topology. This arises as 
follows. 

Let J{+ be the positive portion of J l .  Denote J/{+ w {e} by//{e. For 
a �9 J / ,  let 

 :i )=sup (tl  tl=+ + tlo] x �9  

where e/0 = ~ for e > 0; and set 

~r176  = { x  �9 ~ :  ; .* (x)  < oo } 

Then, for each a � 9  rig, 2"(.)  is a norm on d/~. Furthermore, if a, b �9 d/e, 
then ~/~a-~-~/{bc~/{a+{~a+b+Db+a+b+e, showing that the family 
{(~" ,  2*(.)): a �9  is directed and covers rig. For a�9 let jo be the 
injection of ~ a  in ~z'. Then the topology t;. is the inductive topology on 

determined by the collection {(d/la, ja):a�9 The tx.-topology 
reduces to the uniform topology on the space B(H) of continuous linear 
maps on H. Arnal and Jurzak (1977) discussed an analogous topology 
called the )t-topology. 

Notation. If Y _~ dr', define the commutants Y'~ and ~/V~ by 

JV"~ = { y e L + ( ~ ,  H): (x( ,  Y~I)a = (Y+(,  x+q)H 

for all 4, q �9 D and x �9 Jff } 

JV"E = {y �9 yeL(x)c~R(x)  and y [ ] x = x  {~y 

for all x �9 JV" } 

These are unbounded commutants of the set Jff. (Antoine etal., 1990, 
1991). 
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3. PARTIAL W*-DYNAMICAL SEMIGROUPS 

A unital partial O*-algebra ~ ' c L ~ + ' ( ~ , ~ )  is called a partial 
W*-algebra (Ekhaguere, 1991a) if J/L is self-adjoint [i.e., NaE~ D(a*) = ~], 
t~w-closed, and R(Jg) is t~s.-dense in J/l. 

In the sequel, ~ is a partial W*-algebra, dg I = d/L, and for n >~ 2, j/gn 
is the n-fold Cartesian product of ~ with itself. If z is a topology on ~//t, 
write z n, n >~ 2, for the product topology z • z • --. • z (n times). 

Introduce the following spaces: 

~ ' .~w = the linear space of all (t~w)"-continuous linear forms on 

~ . ~  = the linear space of all (t;.  f-continuous linear forms on ~(  

n n n rig. = ~ . ~ w  ~ Jg.;~ 

On the space J r .  we shall consider the weak topology o-(J/L., J//") as 
well as the topology t.u of uniform convergence on the t~.-bounded subsets 
of Jg. We remark that the dual of ( Jg . ,  ~(J / l . ,  ~///~)) is precisely d/L ~. 

Definition. A n~ap ~: J/~ • J~ ~ ~ is called 

1, conjugate-bilinear if 

(a) ~(x, y )+=@(y,x)  

(b) ~(x, c~y + flz) = ~ ( x ,  y) + fl(I)(x, z), Vx, y, z e ~r ~, fl ~ C 

2. completely positive if 

{L, ~(x,, x~) ~)~ >~0 
i , j = l  

for each positive integer n and all ~ ~ ~), x~ ~ ~//, k = 1, 2 . . . .  , n. 

Remark. The class of completely positive conjugate bilinear maps on 
arbitrary partial *-algebras was studied in Ekhaguere and Odiobala (1991 ). 

Notation. 1. Write CP(~I x ~ )  for the set of all completely 
positive conjugate-bilinear maps (Ekhaguere and Odiobala, 1991) from 
J / x  ~ '  -~ ~/ ,  and CP(d/l x Jg)~w [resp. S(J/ /x ~/g)~w] for the subset of 
CP(~[ x JL) [resp. S(d/L x d / ) ]  ~onsisting of those members of C P ( d / x  J//) 
[(resp. S ( ~ x J / / ) ]  that are continuous from ( J / /x J# ,  t~wXt~w) into 
(~, tow). 

2. If OI,(~2ECP(J~• then define @1oO2 by ((I)loO2)(x , y ) =  
01(e, ~2(X , y)), x, y ~ J//. 
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Similarly, if co e S(Jr Jr and q~ e C P ( ~  x d//), 
(co o r  y )  = co(e, r  y)),  x, y e ~ ' .  

3. We define the map 1: Jr JC/~ ~ '  by 

z(x, y) = Gw x to~ - lira (x~ + [] y~) 

for arbitrary nets (x~), (yz) in R(J//) such that 

define co oqb by 

gas* tas* 
x~ ~ x and y~ ~ y 

We remark that t is idempotent (i.e. K or=i) ,  ~(e,e)=e,  and 
z ~ C P ( ~  x ~/)~w. 

Remark. The following notion was introduced in Ekhaguere (1991a). 

Definition. A partial W*-dynamical semigroup (p.d.s.) on J /  is a 
one-parameter family q)Eo,~l = {r : t >~ 0) of members of CP(J/g x d / / )~  
such that: 

( i )  Cpo = t. 

(ii) cp~ocpz= cp,+, for arbitrary s, t~>0. 

(iii) For fixed (x, y) ~ Jr J / ,  the map t ~ opt(x, y) is continuous 
from [0, oc) to (Jr ,  G~). 

Remark. 1. A description of a class of p.d.s, is furnished in 
Ekhaguere (1991a, Theorem 3.9). 

2. The class of p.d.s, discussed in the sequel is introduced as follows. 

Definition. A p,d.s. ~0Eo, o~)= {q)z: t~>0} on ~(  will be called 

(i) tx.-equicontinuous if for each a ~ Jge there are b(a), c(a) E ~r such 
that 

(ii) 

2a(~O,(x,y))<~&~a~(X)2c~a~(y), VX, y e d / ,  t>~O 

a p.d.s, with squares if ~o(e, x) + lies in L(~o(e, x)) for all x6,//4' 
and t~>O. 

Remark. 1. Any p.d.s, q)~o,~= {q~,: t~>0} with values in M(J4') is 
a p,d.s, with squares. 

2. A p.d.s. ~OEo, o~)= {q~t: t~>0} with squares satisfies the generalized 
Cauchy-Schwarz inequality established in Ekhaguere (1991a). 
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3. A member co of S(Jr Jr is called ~O[o, oo)-invariant if coo q),=co 
on d { x d d .  

4. If ~p[o,~)= {~p~: t~>0} is a t;,-equicontinuous p.d.s, and x, y lie 
in t~,-bounded subsets of rid, then q~[o,~)= {r is a uniformly 
t~o.-bounded subset of J{. 

5. Let ~0 [o, oo)= { q0, : t >/0 } be a t~.-equicontinuous p.d.s, and co e rig.. 
I f f ~  LI(~, dt) and (x, y) lies in a (t;.)2-bounded subset ~) of d / x  rig, then 

co ~ oo the integral Yo dt co(q~t(x, y)) f(t) exists. Hence, co ~o dt co(~p~(x, y)) f(t) 
is a linear form on (~/'., a ( ~ . ,  d//)) for arbitrary (x, y )~  ~ ,  showing that 
there is a member ~o(x, y; f )  of dg such that 

I /  dt co(~ot(x , y)) f(t) = co((p(x, y ; f ) )  

for arbitrary (x ,y)eN.  We denote ~o(x,y;f) by ~dtq~,(x ,y) f ( t ) ,  
f eLl (R ,  dt), (x, y) e~.  If Te  (0, oo), ZEo, r) is the indicator function of the 
set [0, T), and f =  Z Eo, r), we write the last integral simply as ~o r dt q)~(x, y), 
(x, y ) e  ~ .  In the next section, an ergodic theorem concerning this integral 
is established. 

4. A MEAN ERGODIC THEOREM 

We prove the following ergodic theorem for partial W*-dynamical 
semigroups. 

Mean Ergodic Theorem. Let H be a HUbert space, ~ a dense sub- 
space of H, d / c  Lw + (D, H ) a partial W*-algebra, and q~ [o, oo) = { ~ot: t ~> 0 } 
a partial W*-dynamical semigroup on ~ /  with squares. Let 
co e S(Jr J//)ow be a nondegenerate, GNS-representable, q~ to, ~o)-invariant 
state on Jg. Then: 

1. For any (x, y) lying in a (t~.)Z-bounded subset of Jr the limit 

e(x, y ) -  to~- lim l ( rd t  (p,(x, y) 

exists. 

2. e is idempotent, nondegenerate, and satisfies 

c o o g = c o  

eo q~t= q0to~=a, Vt>~0 

on (t;.)2-bounded subsets of ~r all. 
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P r o o f  Since co is GNS-representable (Antoine etal., 1990, 1991), 
it gives rise to a GNS triple (Tro, []qo,, ~o) consisting of a cyclic represen- 
tation ~t~, with cyclic vector g,o, of d// in + Lo~ ( ~ ,  Ho,), where H~o is a 
Hilbert space and [D~ is some dense subspace of H~. Let (J / /x  J//)+ = 
{ ( x , y ) e ~ / x d g : z ( x ,  y)+ =t(x, y)} and ~ = t h e  norm closure in H~ of 
{r~,(l(x, y)) r : (x, y) e (./hf x J{)  § }. Then ~,o is a real Hilbert subspace of 
~,o- Define P, on the dense subspace 7z~(t((~' x J//)+))r of ~o~ by 

P,~o,(t(x,y))~o~=z~(~p,(x,y))r (x, y) ~ (J~' x J / )  + 

Since (e, r y ) )~  (J{ x-C/) + whenever (x, y ) s ( ~ x ~ )  + and 

ejr,,,Ct(x, y) ) ~ = ~co)(q~ sCx, y)) ~o = re,oCt(e, ~o,(x, y))) ~o) 

it follows that 

P,P=~(t(x,  y)) ~o~ = Ptzc~(t( e, q~s( x, Y))) ~,,, 

= ~ ( ~ o , ( e ,  ~0s(x, y ) ) )  ~ 

= ~o~(~,+s(X, y)) ~o 

= Pt+=zc~o(t(x, y)) ~,o 

for all (x, y ) e  ( ~ ' x  ~ )  +, t, s~>O, showing that {P,: t>~O} is a semigroup. 
Moreover, each P, is a contraction, since for arbitrary (x, y) e ( J / x  ~ )  + 
and t~>O, 

llP,rc,o0(x, y)) ~ll ~o, 

= (~(~o,(x,  y)) Lo, z,o(~o,(x, y)) ~o~)~. 

= ( ~ ,  rc~o(~pt(e, z(x, y)) Drc~,(q~,(e, t(x, y)) ~ ) ~ , o  

[since co is GNS-representable and {(0, : t >~ 0} 
is a semigroup with squares] 

= co(e, ~,O(x, y), ~(x, y))) 

= coO(x, y), ~(x, y)) 

[since co is cp to. o~)-invariant-1 

= 1lrc,o(t(x, Y)) ~o~112~ 

showing that P, is a contraction on n~(l((//g x o//g)+))~,o. We denote the 
extension of Pt to the whole of I ~  again by P,. 

Let E be the orthogonal projection of ~ o  onto the linear span of 
{ ~ e ~ , o : P , ~ = r  for all t~>0}. By the Mean Ergodic Theorem (von 
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Neumann, 1932; Birkhoff, 1939; Dunford and Schwartz, 1957) for contrac- 
tion semigroups, the net {(1/T)~Sdt P,}T~(o,~)converges strongly to E. 
Hence, for arbitrary (x, y) in a (ts.)2-bounded subset N+ of (JgxJ/g) + 
and a e~zo~(J//)'D, we have 

whence 

<(rc~(l f f  dtq~t(x,y)) ~a)~,~l>~ 

= <Tr~(lffdt<p,(x,Y))+*a~,~/>~ 

: <TzO~(T;odtCp,(x,Y))',a+q>~ ~ 

lirn <(~o~(llfdt(o,(x,y))Da)~,r/>~,o = (E~o~(t(x, y)) ~, a+q } ~  

showing that Ezto)(z(x, y)): J r  D(a+*). Hence 

<( (1;o ) ) >  lim ~o~ ~ dt~o,(x,y) []a r =(aD(E~zo~(t(x,y)))r 
T ~ cx~ fi~ 

i.e., 

tw-lim 7~o dt <p,(x, y) Da = a[](ETz,o(t(x, y))) 
T ~  ~ Z 

for all (x, y ) e N +  and a s  rco~(J/L)'c, whence 

It follows that the net {(I/T)S~dt ~p,(x, Y)}r~/0,~) converges weakly for 
all (x, y) lying in any (tx.)2-bounded subset of J//x j//. As the net 
{(1/T)S~dt<p,(x,y)}7-~(o.~) is contained in a uniformly tx.-bounded 
subset of ~/whenever (x, y) lies i'n a (tj.)2-bounded subset of J/L x ~' ,  the 
net {rc~((1/T)~dt<p,(x, Y))}T~(o,~)is also contained in a t sbounded  
of 7to,(d/). But on tx.-bounded subsets, the weak topology tw coincides 
(Ekhaguere, 1991a) with the a-weak topology tow. Hence 

('fo ) 
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As ~o~(Jg) is t~w-closed, there is a unique member ~(x, y) of ~ such that 

('fo ) t ~ - l im  7r~o dt ~o,(x, y) = zco)((x , y))  
T ~ oo r 

and, as ~o~ is faithful, 

Gw-lim 1 ~r  dt Or(x, y) = e(x, y) 
T ~ T d o  

for all (x, y) lying in a (t~.)2-bounded subset of Jl{ • ~ '  

2. The map e has the alleged properties. Indeed, from the definition 
of ~, we have 

(ooo e)(x, y ) =  o)(e, e(x, y))  

= t ~ - l i m  1 fo  T-~ ~ -T dt m(e, ~ot(x , y))  

= t ~ -  lim 1 f o  ~:. 00 T dt ~o(x, y) 

[since co is cpE,o~)-invariant l 

= ~o(x, y), for arbitary (x, y) lying in a 

(t~.)2-bounded subset of dg • J# 
and also 

(eo ~0t(x, y ) =  e(e, qb(x, y)) 

= t ~ - l i m  ds (p,(e, ~o(x, y))  
T ~  oo - T  

- fo = t~w-lim ds ~o,+,(x, y) 
T--+ oo 

 fi" = t~ - l im  ds q~,(e, ~o,(x, y)) 

=t~-limr~ q), e , ~  ds~o,(x,y)  

= 0,(e,  e(x, y))  

1 ~t+ r 
= G~-limr~ -T J0 dr <p~(x, y) 

= e(x,  y )  
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for arbitrary (x, y) lying in a (t;.)Z-bounded subset of ~ g x ~ ' .  This 
concludes the proof. 

Remark. The foregoing theorem generalizes 
noncommutative mean ergodic theorem obtained 
W*-algebras of bounded operators. 

Watanabe's (1979) 
for semigroups on 
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